

Schottky rectifier

Features

- Low profile package
- Ideal for automated placement
- Ultrafast reverse recovery time
- Low power losses, high efficiency
- Low forward voltage drop
- High surge capability
- High temperature soldering:
 260°C/10 seconds at terminals
- Component in accordance to RoHS 2002/95/1 and WEEE 2002/96/EC

Mechanical Date

• Case: JEDEC MSMA molded plastic

 Terminals: Solder plated, solderable per JESD22-B102

• Polarity: Laser band denotes cathode end

Major Ratings and Characteristics

I _{F(AV)}	3.0 A
V_{RRM}	20 V, 30V, 40V
I _{FSM}	75 A
V _F	0.40V
T _j max.	125 °C

Maximum Ratings & Thermal Characteristics

(T_A = 25 °C unless otherwise noted)

Items	Symbol	MASL32	MASL33	MASL34	UNIT
Maximum repetitive peak reverse voltage	V_{RRM}	20	30	40	V
Maximum RMS voltage	V_{RMS}	14 21		28	V
Maximum DC blocking voltage	V_{DC}	20	30	40	V
Maximum average forward rectified current	$I_{F(AV)}$	3			
Peak forward surge current 8.3 ms single half sinewave superimposed on rated load	I _{FSM}	75			
Voltage rate of change (rated V _R)	dv/dt	10000			
Thermal resistance from junction to lead ⁽¹⁾	$R_{ heta JL}$	35			°C/W
Operating junction and storage temperature range	T_J,T_STG	-65 to +125			$^{\circ}$ C

Note 1: Mounted on P.C.B. with 0.2 x 0.2" (5.0 x 5.0mm) copper pad areas.

Electrical Characteristics (T_A = 25 °C unless otherwise noted)

Items	Test conditions		Symbol	Min	Туре	Max	UNIT
Instantaneous forward voltage	I _F =3.0A ⁽²⁾		V_{F}	-	-	0.40	V
Reverse current	V _R =V _{DC}	T _j =25℃ T _j =100℃	I _R	-	-	0.5 10	mA

Note 2: Pulse test:300µs pulse width,1% duty cycle.

Schottky rectifier

Characteristic Curves (T_A=25 [°]C unless otherwise noted)

Fig.1 Forward Current Derating Curve



Fig.2 Maximum Non-Repetitive Peak Forward Surge Current 75

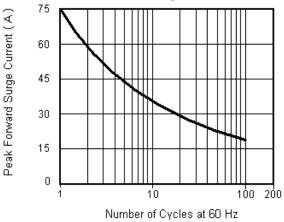


Fig.3 Typical Instantaneous Forward Characteristics

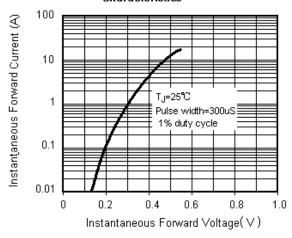
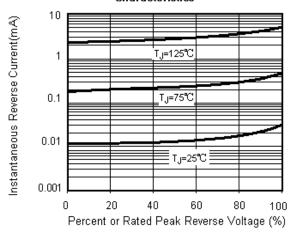



Fig.4 Typical Reverse Leakage Characteristics

Schottky rectifier

Package Outline

1.60(0.063) 1.20(0.047) 1.20(0.047) 1.20(0.047) 0.10(0.004)max 4.70(0.185) 4.30(0.169)

Dimentsions in millimeters and (inches)

Notice

- Product is intended for use in general electronics applications.
- Product should be worked less than the ratings; if exceeded, may cause permanent damage.or introduce latent failure mechanisms.
- The absolute maximum ratings are rated values and must not be exceeded during operation. The following are the general derating methods you design a circuit with a device.
 - $I_{F(\text{AV})}\!:\!\text{We recommend that the worst case current be no greater than 80%}$.
 - T_J : Derate this rating when using a device in order to ensure high reliability. We recommend that the device be used at a T_J of below 100°C.
- TRR is registered trademark of Zhejiang TRR Microelectronics Inc. Zhejiang TRR Microelectronics Inc reserves the right to make changes to any product in this specification without notice.
- Zhejiang TRR Microelectronics Inc does not assure any liability arising out of the applications or use of any product described in this specification.
- Zhejiang TRR Microelectronics Inc advises customers to obtain the latest version of the device information before placing orders to verify
 that the required information is current.